Students Enrolled in Probability and Statistics for the 2020-2021 School Year Summer Packet

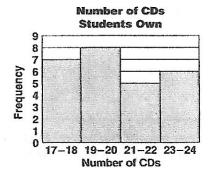
Name:

This packet is to help you review various topics that are considered to be prerequisite knowledge upon entering Probability and Statistics. In order to ensure that the good skills you developed in previous math courses do not disappear, working on this packet is highly recommended over the summer. A good habit would be to do at least one math problem every day. Enjoy your summer, but be sure to come prepared with the necessary knowledge to continue into Probability and Statistics next year. These skills and topics will be assessed in the fall.

Frequency Tables, Line Plots, and Histograms

Aimee asked students in her grade

how many CDs they own. She displayed her data in a frequency table. Each tally stands for 1 CD.


Students' CD Collections

Number of CDs	17	18	19	20	21	22	23	24
Tally	441	ı	1111	Ш	ı	1111	11	1111
Frequency	6	1	5	3	1	4	2	4

She displayed the same data in a line plot. Each X stands for 1 CD.

	ımbe	er of	CDs	Stu	dent	s Ow	'n
X X		х					
X		X			Х		Х
X		X	X		X		X
X		X	X		X	X	X
X	Х	X	Х	X	Х	X	X
17	18	19	20	21	22	23	24

She also made a histogram to show the frequencies. The bars represent intervals of equal size. The height of each bar gives the frequency of the data.

Use the frequency table for Exercises 1-3.

- 1. Ms. Ortiz's class is planning a school garden. She asked her students how many rose bushes they want in the garden. She recorded the data in a frequency table. Complete the table.
- 2. Use the frequency table to make a line plot for the data.
- 3. Draw a histogram of the students' data.

Number of Rose Bushes	1	2	3	4	5	6
Tally	ı	1111	111	11111	1	ı. I
Frequency				F	1111	

Circle Graphs

The class took a survey of favorite foods.

The results are shown in the table and the circle graph.

To make a circle graph:

- 1 Find the total number of votes.
- ② Find each part of the total as a fraction or percent.
- 3 Find the measure of each central angle in the circle graph.
- Draw, label, and title the graph.

Food	Votes	② Fraction	%	③ Degrees
Burgers	8	$\frac{8}{48}=\frac{1}{6}$	$16\frac{2}{3}\%$	60°
Pizza	16	1/3	33 1 3%	120°
Steak	6	1/8	121/2%	45°
Tacos	12	1/4	25%	90°
Pasta	6	1/8	121/2%	45°
Total	1			360°

All rights reserved.

Find the measure of the central angle that represents each fraction or percent in a circle graph.

1.
$$\frac{1}{5}$$
 2. 40% **3.** $\frac{1}{2}$ **4.** 5% **4.** 5%

Monthly Family Budget

Item

Rent

Food

Gas

Phone

Misc.

Clothes

6.
$$\frac{1}{10}$$

5. 35% _____ **6.**
$$\frac{1}{10}$$
 _____ **7.** 20% _____ **8.** $\frac{1}{12}$ _____

Display the data in each table in a circle graph.

9. a monthly family budget

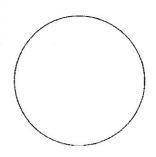
Amount

\$425

\$150

\$50

\$75


\$25

\$100

	\

10. number of children per family

Children per Family				
Children	Families			
0	4			
1	15			
2	20			
3	13			
4	5			
5	3			

® Pearson Education, Inc., publishing as Pearson Prentice Hall.

Stem-and-Leaf Plots

A stem-and-leaf plot is an easy way to show data arranged in order.

8th Grade 100-M Dash (Times to Nearest 0.1 s)

13.1	16.2	15.5	15.2	13.5
15.3	14.8	14.4	17.5	12.2
14.1	16.1	16.9	15.3	16.8
16.0	15.3	12.0	18.2	14.6
13.2	18.3	16.6	15.3	18.8

① Choose stems. The times range from 12.0 to 18.8. Choose 12 to 18 as stems.

2 List the tenths digits as leaves.

18	238
17	5
16	012689
15	233335
14	1468
13	125
12	02

3 Make a key to explain what each stem and leaf represents.

18 | 2 means 18.2

The mode is the most frequent number.

The mode is 15.3 seconds.

The range is the greatest number minus the least number.

The range is 18.8 - 12.0 = 6.8 seconds.

The **median** is the middle number or average of the middle two numbers. The median is 15.3 seconds.

1. Complete the stem-and-leaf plot for the data.

8th Grade 200-M Dash (Times to Nearest 0.1 s)

32.1	38.5	31.7	34.7
35.2	34.4	30.2	35.3
31.9	36.0	32.2	36.7
31.4	34.7	29.5	36.9
33.4	38.6	34.7	37.3
	35.2 31.9 31.4	35.2 34.4 31.9 36.0 31.4 34.7	35.2 34.4 30.2 31.9 36.0 32.2 31.4 34.7 29.5

Times for the 200-M Dash

38	
37	
36	
35	
34	
33	
32	
31	
30	
29	

Use your stem-and-leaf plot for Exercises 2-5.

- 2. The mode is _____.
- 3. The range is _____.
- 4. The median is
- 5. How many 8th grade students finished the race in less than 35 s?

Percent of Federally Owned Land in Ten Western States

45% 24% 52% 61% 28%

42% 34% 48% 63% 36%

Box-and-Whisker Plots

Make a box-and-whisker plot for the data set.

Step 1: First list the data in order from least to greatest. Find the median.

24 28 34 36 42 | 45 48 52 61 63

Since there is an even number of percents (10),

there are two middle numbers. Add them and divide by 2.

$$\frac{42+45}{2} = \frac{87}{2} = 43.5$$

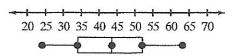
The median is 43.5.

Step 2: Find the upper and lower quartiles.

The lower quartile is the median of the lower half.

24 28 34 36 42

The lower quartile is 34.


The upper quartile is the median of the upper half.

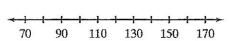
45 48 52 61 63

The upper quartile is 52.

Step 3: Draw a number line. Mark the least and greatest values, the median, and the quartiles. Draw a box from the first to the third quartiles. Draw whiskers from the least and greatest values to the box.

The data range from 24 to 63. A scale of 5 from 20 to 70 would have

Make a box-and-whisker plot for each data set.

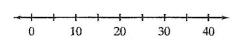

1. area in 1,000 mi² of 13 western states

122 164 71 98 84 147 114 111 98 85 104 71 77

median:

lower quartile:

upper quartile:


2. percent of area that is inland water for 11 northeastern states

13% 4% 26% 4% 32% 13% 15% 3% 21% 7% 21%

median:

lower quartile:

upper quartile:

Scatter Plots and Trends

Gilbert is investigating the relationship between the number of credit cards a person has and the amount of credit card debt.

First, he made a table of his data.

Credit Cards and Credit Card Debt

Number of Cards	Amount of Debt
1	\$0
1	\$1,000
1	\$5,000
2	\$3,000
2	\$5,000
3	\$10,000
3	\$5,000
3	\$8,000
4	\$10,000
5	\$19,000

Then he plotted the data in a scatter plot.

Gilbert's scatter plot shows a positive trend in the data. That means as the number of credit cards goes up so does the amount of debt. As one value goes up, so does the other.

In a negative trend, one value goes up while the other goes down.

1. Dana surveyed her friends about how much TV they watch and their average test scores. Her results are shown below. Complete the scatter plot for the data.

Test Scores and TV

TV Hours Per Day	Average Test Score	TV Hours Per Day	Average Test Score				
1	98	3	79				
1	86	3	73				
2	90	3	75				
2	82	4	62				
2	85	5	68				

Test Scores and TV 100 **Test Scores** 80

70 60

- 2. Is the trend in the data negative or positive? Explain.
- 3. Describe the relationship Dana likely found between test scores and TV time.
- 26 Data Analysis and Probability Workbook

26

26

Number of Pages Read by Members of the Science Fiction Book Club

27

26

26

23

27

29

Measures of Central Tendency

The median of this set of data is the middle value when the scores are ordered.

23 25 25 26 26 26 26 26 27 27 28 29

Since there are two middle scores, add them and divide by 2.

$$\frac{26+26}{2}=26$$

The mean is the sum of the scores divided by the number of scores.

$$25 + 26 + 28 + 25 + 26 + 27 + 27 + 26 + 26 + 29 + 26 + 23 = 314$$

$$\frac{314}{12}$$
 = 26.166667, or about 26.2 pages

The mode is the score that occurs the most. The mode is 26 pages.

All rights reserved,

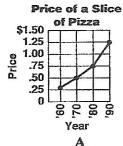
Choose a calculator, pencil and paper, or mental math. Find the mean, median, and mode of each set of data.

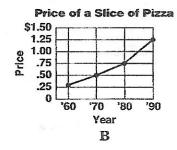
- 1. movies seen: 3 3 1 4 0 4 2 5 7 4 1 2
- 2. miles hiked: 5 10 9 12 8 4 5 7 5 13 11
- 3. runs scored: 0 0 8 4 15 9 1 1 6 7 10 2
- 4. costs of a ride:

\$3.25 \$2.50 \$4.00 \$4.00 \$3.50 \$2.00 \$4.00 \$3.00 \$2.50 \$3.00 \$4.00

Name the measure of central tendency you would report to your parents. Give your reason.

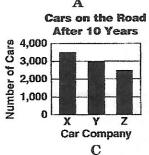
5. test scores: 89 84 79 80 81 55

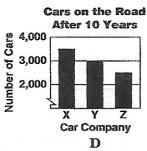

6. friends' allowances: \$10 \$15 \$12 \$15 \$8


Misleading Graphs

Data can be displayed on graphs in ways that are misleading.

The horizontal scales make these graphs seem different.


As the numbers are moved farther apart, it appears that the change over time is less.



These graphs may seem different because of how the vertical scales are drawn.

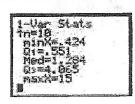
The break in the vertical scale makes the differences seem greater than they really are.

Use the graphs above to answer Exercises 1-6.

- 1. Which graph might be used to convince someone that the price of pizza has risen too quickly over the years?
- 2. Which graph might be used to convince someone that pizza makers should raise their prices?
- 3. Name 2 ways in which the pizza graphs differ.
- **4.** Which graph would Car Company X use to show that its cars last longer than the competition?
- 5. Which graph of cars still on the road after 10 years would Car Company Z prefer?
- 6. Name 2 ways in which graphs C and D differ.

All rights reserved.

Example


Enter the data from the table at the right. Find the mean, median, standard deviation, and the first and third quartiles.

STEP 1: Enter the tourist data into list L1 by pressing

ILZ	12.3	İ
1	·	
i	F	
1		
	ŧ	
<u> </u>		
	12	12 23

STEP 2: View the statistics for the tourists visiting the United States by pressing STAT 1 ENISE. Press Trive times to scroll to the bottom of the statistics.

The 10 Most America-Loving Countries

Country	Tourists (in millions)				
Canada	15.0				
Mexico	11.325				
Japan	4.065				
Britain	2.921				
Germany	1.705				
France	0.863				
Brazil	0.661				
Italy	0.551				
South Korea	0.504				
Venezuela	0.424				

Source: Time Magazine

Note: By default the TI-83/TI-83 Plus looks for data in L1. If the data is stored elsewhere, the list name must follow 'L-VAR Stats'.

Q3:

STATISTICS: The following table identifies the statistical symbols.

x: mean of entries

Sx: sample standard deviation

Q1: first quartile of entries

Σx: sum of entries

ox: population standard deviation

Med: median of entries

 Σx^2 sum of the squares of entries

total number of entries

third quartile of entries

*

minX: smallest entry

maxX: largest entry

Exercises

Enter the data. Find the mean, median, standard deviation, and the first and third quartiles.

1

State Gasoline Taxes in 1992 (¢/gal)

State	AK	AR	СО	DE	FL	Ш	IL	IA	KY	ME	MA	MN
Tax	8	18.5	22	19	4	16	19	20	15	19	21	20
State	МО	NE	NH	NM	NC	ОН	OR	RI	SD	TX	VT	WA
Tax	13	23.7	18	16	22.3	21	22	23	18	20	15	23

Source: The Universal Almanac 1996